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Abstract

How do financial market investors form expectations about assets with different risk

characteristics? We examine this question using Euro-area yield curves for AAA-rated and

AAA-with-other bonds. Investors’conditional forecasts about the yield curves for different

assets, at various forecasting horizons, are modeled using a VAR model with time-varying

parameters. Two processes are assumed for the evolution of these parameters: a constant-

gain learning model and a new endogenous learning technique proposed here. Both these

algorithms allow investors to account for structural changes in the data. The endogenous

learning mechanism also allows investors to compensate for large deviations in observed

coeffi cients used for forecasting, relative to past data. Daily data is used to estimate the

gain parameters for the learning algorithms, and we find that these gains vary across asset

types, implying investors form conditional expectations differently for assets with differential

risks. For 2005-2015, the investors’conditional forecasts for the AAA-rated bonds are better

described using the endogenous learning mechanism, implying that investors with lower risk

preferences are more sensitive to large deviations in the data.
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1 Introduction

Expectations of investors about the cross-section of yields are important for policy makers

and financial markets: forecasts of the Treasury yield curves are central for the transmission

of monetary policy actions from the short end of the yield curve to the long end; conditional

expectations about yields on riskier assets affect borrowing costs for a variety of firms and

investors. The importance of expectations formation has been widely analyzed. Hommes

(2006) presents survey evidence about the rational expectations paradigm may not be fully

representative of expectations formation in financial markets: the excess volatility in stock

prices and survey expectations of professional forecasters suggest that different forecasting

strategies are being used. However, the literature on estimating these expectations from

the data is still relatively underdeveloped. Some of the new approaches used to model

expectations formation in the boundedly rational approach are discussed in Hommes (2013),

such as heterogeneous agent-based models and evolutionary learning.

In this paper, we propose to estimate and characterize the expectations formation process

of financial investors. We are specifically interested in exploring how investors form beliefs

for asset yields with distinct risk profiles, over different maturities. Traditionally, rational

expectations has been the dominant paradigm used for modeling investor beliefs for assets,

irrespective of their risk characteristics. However, an expanding literature finds that the use

of rational expectations may be inadequate. A wide range of survey data from professional

forecasters shows systematic variations in forecasting errors3; this is counter to the rational

expectations hypothesis for such investors. For example, Gourinchas and Tornell (2004) show

that the foreign exchange forward premium puzzle can be shown to arise from systematic

distortions in investor beliefs about interest rates and document this distortion using survey

data from G-7 countries. Bacchetta, Mertens and Van Wincoop (2009) investigate the link

between predictability of excess returns and expectational errors in the stock market, for-

eign exchange and bond and money markets, using data on survey expectations of market

participants in various countries. The authors find that in markets with predictable excess

return patterns, expectational errors of excess returns are also predictable, with same signs

and similar magnitudes.

We use a novel European dataset to characterize the conditional expectations of investors.

3This is true for forecasts of interest rates as well as macroeconomic variables such as GDP and inflation.
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A unique feature of the Euro-area yield curve data is that two types of yield curves are

estimated: yields for AAA-rated only bonds, and yields on bonds with AAA- and other

types of bonds. This enables us to distinguish between the expectations formation process

for bonds with varying risk attributes. We ask whether investors form conditional forecasts

of riskless or AAA-rated assets in the same way as for assets with higher risk. Our analysis

also examines whether the beliefs of investors are time-varying, over the other characteristics

of maturity and forecast horizons.

We employ the following strategy: estimates of the Euro-area yield curves (based on a

latent factor model) are obtained from the European Central Bank (ECB). Using this factor

model, implied conditional expectations of yields (and associated latent factors) are formed

using a vector auto-regressive (VAR) model of the latent factors. We minimize the root mean

squared errors (RMSE) of the implied yield forecasts relative to observed yields to reveal

which expectation formation process would have achieved the best forecasting performance.

The intuition for our strategy can be described as follows. As a benchmark, consider this

framework with constant coeffi cients. A constant coeffi cients model restricts the investors

to place identical weights on past information while forecasting the short and long asset

yields. The model also implies that the investors must be using constant coeffi cients to

form expectations over different forecasting horizons. Thus, it does not allow investors to

endogenously adapt to any structural breaks that they might perceive in the evolution of

the average yields, or the yield curve slope. This seems undesirable from a practical point

of view, particularly during periods of high perceived structural change.

Therefore, we explore alternative specifications for the formation of conditional forecasts

of the yield curve factors, and subsequent yields. Theoretical analyses, such as Piazzesi,

Salomao and Schneider (2015) and Sinha (2015), incorporate adaptive learning into the ex-

pectations formation of optimizing agents in models of the yield curve. The implied term

structures are more successful at matching the properties of the empirical yield curve, relative

to models with time-invariant beliefs. A class of adaptive learning models is also considered

here for expectations formation: constant gain learning and an endogenous learning algo-

rithm. The main innovation is that investors are now allowed to vary the weights they place

on past information about yields; they are also able to change these weights in response to

large and persistent deviations observed in the yield curve factors.

Our empirical strategy allows us to estimate the gain parameters from the data. While
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these are conditional on the forecasting model used, to our knowledge, these provide the

first estimates in the literature about how investors form expectations about different types

of assets. We find that over our sample period (between September 2005 and June 2015),

the performance of the constant gain algorithm is frequently overtaken by the endogenous

learning model for the safest (only AAA-rated) assets. This suggests that investors, in fact,

use models with time-varying coeffi cients to form their conditional forecasts. They also

adjust the weights placed on past observations when large deviations in the coeffi cients are

observed. These adjustments in conditional forecasts of yields may also potentially effect

the holdings of safe assets by investors.

This paper is organized as follows: section two gives a brief overview of the literature.

The factor model for the nominal yield curve is presented in section three. Section four

discusses the different learning mechanisms and section five presents the numerical results.

Section six concludes.

2 Related Literature

Time-varying beliefs have been widely incorporated in partial and general equilibriummodels

of asset prices to match characteristics of the data. Branch and Evans (2010) use a model

of recursive least-squares learning to explain asset pricing dynamics observed in U.S. data,

such as excess returns. The authors also show the existence of multiple equilibria, and that

under optimal forecasting rules, switching may occur between these equilibria. Laubach,

Tetlow and Williams (2007) allow investors to re-estimate the parameters of their term

structure model based on incoming data. In Branch and Evans (2011), the authors show

that when agents learn about the riskiness of stocks, price bubbles and ensuing crashes can

be generated. Piazzesi, Salomao and Schneider (2015) decompose expected excess returns

into the returns implied by the statistical VAR model and survey expectations, used as an

approximation for subjective investor expectations. Survey expectations are found to be

significantly more volatile compared to model implied returns. The authors use constant-

gain learning to describe these expectations, and the excess returns implied by the learning

model capture movements in the empirical data better. The common theme of these analyses

is the incorporation of subjective beliefs in explaining characteristics of the empirical term

structure. The distinguishing feature of our analysis is we use the term structure data
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to estimate the process that produces the best forecasts at different forecast horizons and

maturities.

Endogenous learning algorithms have been previously introduced in the literature by

Marcet and Nicolini (2003) and Milani (2014). In the former analysis, the authors incorpo-

rate bounded rationality in a monetary model; the agents switch between using a constant

gain and a decreasing gain algorithm. They are successfully able to explain the recurrent hy-

perinflation across different countries during the 1980s. In Milani (2014), the agents switch

between gains based on the historical average of the forecasting errors, instead of a fixed

value. Gaus (2014) proposes a variant of the endogenous gain learning mechanism, in which

the agents adjust the gain coeffi cient in response to the deviations in observed coeffi cients.

Kostyshyna (2012) develops an adaptive step-size algorithm to model time-varying learning

in the context of hyperinflations.

Finally, this paper hypothesizes that economic agents form expectations differently about

assets with varying risk characteristics. This may be due to their individual preferences or

the costs associated with holding these assets. Verrecchia (1982) uses a model of information

acquisition with heterogeneous traders to show that learning from costly private information

and freely available asset prices affects the distribution of traders’risk preferences.

3 FactorModel for the Euro-area Nominal Yield Curve

The ECB provides estimates of the yield curves associated with different types of bonds.

Daily estimates of the zero-coupon yield curves are available from September 6, 2004 on

the ECB’s website. The bond and price information is provided by EuroMTS Ltd. and

ratings are provided by Fitch Ratings. There are six criteria used to select bonds: (1)

Bonds issued in Euros by Euro area central governments (European System of Accounts

1995: sector code S.1311); (2) Bonds with an outstanding amount of atleast Euro 5 Billion;

(3) Bonds with special features, including those with specific institutional arrangements are

excluded; (4) Fixed coupon bonds with a finite maturity and zero coupon bonds are included,

while variable coupon bonds and perpetual bonds are excluded; (5) Actively traded central

government bonds with a maximum bid-ask spread per quote of 3 basis points are selected;

(6) Residual maturity brackets are fixed as ranging from three months to thirty years. Other
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characteristics are available on the ECB website4.

The two datasets for which the yield curves are generated are: the first containing only

AAA-rated Euro-area central government bonds (most favorable credit risk assessment), and

the other containing other government bonds, in addition to the AAA-bonds. We use these

yield curves to characterize the formation of expectations by investors for asset portfolios

two different risk profiles.

Both yield curves are modeled using the Nelson-Siegel-Svensson approach:

ynt = β0 + β1

1− exp
(
−n
τ1

)
n
τ1

+ β2

1− exp
(
−n
τ1

)
n
τ1

− exp

(
−n
τ 1

) (1)

+β3

1− exp
(
−n
τ2

)
n
τ2

− exp

(
−n
τ 2

) .
Here ynt is the zero-coupon yield of maturity n months at time t, β0 approximates the level

of the yield curve, β1 approximates its slope, β2 the curvature and β3 the convexity of the

curve. The latter captures the hump in the yield curve at longer maturities (20 years or

more). When β3 = 0, the specification in (1) reduces to the Nelson-Siegel (1987) form. The

parameters in (1), which are β0, β1, β2, β3, τ 1 and τ 2 are estimated using maximum likelihood

by minimizing the sum of squared deviations between the actual Treasury security prices and

the predicted prices.5

To construct yield forecasts using the representation in (1), it must be amended with a

process for the evolution of the factors. Diebold and Li (2006) and Aruoba, Diebold and

Rudebusch (2006) specify the two-step estimation of yields and factors:

yt = Xtβt + εt (2a)

βt = µ+ Φβt−1 + ηt. (2b)

4https://www.ecb.europa.eu/stats/money/yc/html/technical_notes.pdf
5The prices are weighted by the inverse of the duration of the securities. Underlying Treasury security

prices in the Gürkaynak, Sack and Wright estimation are obtained from CRSP (for prices from 1961 - 1987),
and from the Federal Reserve Bank of New York after 1987.
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Here yt is the 3 × 1 vector of yields, Xt is a 4 × 1 vector of the regressors in (1)6, βt is a

4 × 1 vector of the factors, µ is the intercept and Φ denotes the dependence of the factors

on past values. We will consider this as the benchmark model for factor evolution. The

variance-covariance matrices given by:

var(εt) = H =

σ
2
1 0 0

... ... ...

0 0 σ2
n

 ; var(ηt) = Q =

ω
2
11 ω2

12 ω2
13

... ... ...

ω2
n1 ω2

n2 ω2
n3

 . (3)

The factor errors are assumed to be distributed as a normal, with mean zero.7

3.1 Properties of the Fitted Yield Curves

The fitted yield curves for the AAA- and All-rated assets are shown in figure 1. The break in

the yield series in evident from the start of the financial crisis: there is a significant deviation

in the yields on riskless and risky assets. Table 1 shows the moments of the term structure

of yields across two sample periods. Both types of yields show an increase in the standard

deviation after January 2008. We also observe a rise in average yields across the maturity

structure between 2008-2015; before this, the averages across AAA- and All-bond yields are

similar.

4 Construction of Yield Forecasts

In order to construct yield forecasts using a model, investors are assumed to use the term

structure model in (2). This requires forecasts of the factors, βt. If investors use the

constant-coeffi cients model for the factors in (2b), then the forecasts are determined as:

Etβ̂t+h =
[
I3 − Φ̂h

] [
I3 − Φ̂

]−1

µ+ Φ̂hβt. (4)

However, this process does not allow for the investors to account for any structural changes

in the data. Since our time-period covers the financial crisis of 2007 and its aftermath, this

6Since the parameters τ1 and τ2 are jointly estimated using the maximum likelihood approach, the Xt

vector is time-varying.
7In the estimation, the cross covariances in ηt are set to zero.
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would not be a valid exercise. Therefore, to allow investors to account for structural change

in the underlying data, we estimate a time-varying parameters model for the factors.

Under this framework, we assume that at time t, the agents update their estimates of the

parameters (µ,Φ) as new information on yields and implied latent factors becomes available.

The timing is as follows: at time t, the estimates of (β0, β1, β2, β3, τ 1, τ 2) are derived using

maximum likelihood estimation. To construct forecasts of the yields at one-, three- and

six-month horizons, the investors use the updating processes described below to determine

(µt,Φt). Once the parameters (µt,Φt) are estimated, they are used for constructing the

conditional yield forecasts.At time t + 1 the process is repeated, and updated estimates of

(µt+1,Φt+1) are used to construct the forecasts of yields and corresponding forecast errors.

Since the parameters (µ,Φ) can now be updated (in contrast to remaining constant as in

(2b)), the factor process is represented using a time-varying VAR model:

βt = µt−1 + Φt−1βt−1 + ηt. (5)

For each factor βi, i ∈ {0, 1, 2, 3}, the coeffi cients Ωi,t =
(
µi,t,Φi,t

)
are updated as:(

µi,t

φi,t

)
=

(
µi,t−1

φi,t−1

)
+ gi,tR

−1
i,t−hqi,t−h

[
βi,t −

(
µi,t−1

φi,t−1

)′
qi,t−h

]
(6)

Ri,t = Ri,t−1 + gi,t
[
qi,t−hq

′
i,t−h −Ri,t−1

]
where qi,t−1 =

(
1, βi,t

)′t−1

t=0
, gi,t is a 5× 5 diagonal matrix of the weights assigned by investors

to the forecast errors made for
(
µi,t,Φi,t

)
, and βi,t is the latent factor derived at time t using

the maximum likelihood procedure. Ri,t is the covariance matrix. Finally, the forecasts of

the yields are given by:

Etyt+h = XtEtβ̂t+h (7)

Etβ̂t+h =
[
I3 − Φ̂h

t−1

] [
I3 − Φ̂t−1

]−1

µt−1 + Φ̂h
t−1βt.

We make the assumption that while making conditional forecasts at time t, the investors

do not allow for the possibility that they will revise their estimates of (µ,Φ) .This is the
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anticipated utility assumption (Kreps, 1988).8 In the following sections, we show two schemes

which are used to determine gi,t.9

4.1 Constant gain learning

With constant gain learning (CGL), the gain matrix gi is a 5 × 5 where all the elements

along the diagonal are identical and remain constant over time. CGL has been a widely

used method for characterizing the expectations formation for optimizing agents in macro-

economics and finance. Milani (2011) uses survey data on expectations to estimate a New-

Keynesian model with constant gain learning, and finds that for the U.S. business cycle,

expectations shocks regarding future real activity account for approxiately half of the busi-

ness cycle fluctuations. Branch and Evans (2011) use constant gain learning in an asset

pricing model to show that bubbles and crashes can emerge as endogenous responses to the

fundamentals which drive asset prices. In contrast to the constant-coeffi cients model, in-

vestors can now allow for structural changes in the data they are forecasting, by placing an

exponentially decaying weight on the history of observations. However, while CGL has been

widely used, it does not allow them to modify the weights they place on past data, in case

they observe actual data realizations that are significantly different. That is, at any point

in time, the agents will continue to place the same weight on an observation n quarters ago

that they did before.

4.2 Endogenous gain learning

Under endogenous gain learning, EGL hereafter, the investors continue to use the law of

motion for the factors in (5), along with the updating equation in (6). However, while the

gain matrix is still diagonal, the diagonal elements are not held fixed for the entire sample.

The innovation in this learning algorithm, in contrast to CGL is that in time periods during

which agents observe large deviations in the realization of coeffi cients, they are able to adjust

8For the estimation exercise, h = 1 for the 1- and 3-month horizons. The h-value is interpreted as
signifying the forecasts for these different horizons. This assumption is made for numerical reasons: the wide
variations in the factor time series imply that the eigenvalues are close to a unit root. In this case, the value
of Φ̂h becomes explosive in case of h > 1.

9If the gain gt = 0, then the parameters remain constant, and the forecasts of the factors will be con-
structed as in (4).

9



the weight placed on past observations upwards or downwards.

Formally, under endogenous learning, the gain switches according to the specification

below:

gij,t = ḡi + ḡsfi

exp
(

Ωij,t−Ω̄ki
σΩij

)
1 + exp

(
Ωij,t−Ω̄ki
σΩij

) . (8)

The notation is as follows: for factor βi, i ∈ {0, 1, 2, 3} , gij,t is the jth element on the
diagonal of gi. ḡi is the gain for βi and ḡ

sf
i is the scaling factor used by investors to adjust

their gain parameter to deviation in the Ωij coeffi cient matrix. Ω̄k is the average of the

k most recent coeffi cients and σΩij is the standard deviation of these k coeffi cients for the

ij − th element. In this form of learning, if the recent coeffi cient estimate (Ωij,t) is close

to the mean (Ω̄k
ij), then gij,t = ḡi. However, as the realization of Ωij,t diverges from Ω̄k

ij,

the gain approaches ḡi +ḡsfi . We place the following constraints on the endogenous gain

parameters, 0 < ḡi < 1, |ḡsfi | < 1 and ḡi +ḡsfi < 1, so that gij,t will be bounded between

zero and one. The novel feature of this learning mechanism is that it allows the investors

to endogenously switch their beliefs and permits them to change the weights they place on

past data, in response to new information. Investors are allowed to increase or decrease the

value of the gain in times when their coeffi cient estimates are different from the recent past.

This algorithm is similar to the endogenous learning mechanism originally developed in Gaus

(2014). The comparative numerical results below are presented for the CGL algorithm, and

the gain specification following (8). The estimation of the gain parameters for (6) and (8)

are discussed below in section 5.1 below.

The use of this functional form for EGL can be motivated using the analysis of Marcet

and Nicolini (2003). The authors model investors as switching between a constant-gain

and a decreasing-gain algorithm to explain recurrent hyperinflations in the 1980s in several

countries. The investors are assumed to switch to a constant-gain learning model if the

forecast errors observed are relatively large. In the endogenous learning model proposed

here, we model the investors are changing their gain in response to the size of their forecast

errors.
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5 Evaluation of the Models and Implications for In-

vestor Expectations

The mechanics of these two models of expectations formation may be understood as follows:

the CGL algorithm allows investors to allow for structural changes in the data. In addition,

the EGL mechanism allows them to compensate for large deviations in observed coeffi cients.

Consider an investor who is forecasting yields in March 2015; she will put less weight on

observations from 2005 than on observations from 2010 under CGL. However, if she observes

a large deviation in the coeffi cient realizations of March 2015 relative to the past year, the

EGL mechanism will allow the investor to vary her weights on 2010 (and 2005) data in

response to the deviation. This compensation may involve placing more or less weight on

the past observations. In contrast, under the constant coeffi cients model, she will be placing

the same weights on the observations from 2005 and 2010 as before.

There are three aspects of investor expectations that we will analyze. First, do investors

form expectations about the safest assets (AAA-only) differently from assets with higher

risk? Second, for a fixed yield maturity, how do investors form conditional forecasts over

different forecasting horizons for these asset types? That is, do they hold their beliefs constant

while making forecasts over the short- and medium-term, or do the beliefs depend on the

forecasting horizon? Finally, when the forecasting horizon is held constant, do investors keep

their beliefs constant while making forecasts about the one- and ten-year yields, or are these

beliefs varying? The results presented below will provide a framework for analyzing the

beliefs of investors on these dimensions.

The models’forecasting performance is evaluated by comparing their root mean square

errors (RMSEs), and we also discuss the implications of these results for modeling investor

expectations. We use the full sample period available, from September 15, 2005 to June 8,

2015. The in-sample forecasts are constructed for the one-, five- and ten-year yields, at the

one-, three- and six-month horizons for both types of yield curves. These horizons are set

to match (on average) the number of trading days. For example, for constructing the one-

month ahead forecast, the number of days is set at 21. We describe the computation of the

optimal gains used in the different learning mechanisms below, and the model evaluations

in section 5.2.
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5.1 Determination of the Gain Parameters

The determination of the gain parameters under CGL has been a matter of significant

research. Current estimates in the literature are available from Bayesian estimates from

small-scale DSGE models (Milani, 2007) and by calibrating these parameters by matching

the moments of forecast errors implied by the model and those of survey data. In this

paper, we use the data to directly estimate optimal gain parameters. The estimation of

the gain parameters are conditional on investors using the model of yield determination in

(2a) and (5). Unlike previous analyses10, we allow investors to use different gains for the

four latent factors. Thus, the investors are no longer constrained to forming expectations

of the level factor in the same way as for the slope factor. We also allow the gains to vary

across forecasting horizons and asset types. The initial values of the gain parameters used

are available upon request.

The optimization routine minimizes the root mean squared forecasting error (RMSE) be-

tween the actual yields and model-implied yield forecasts, over the parameters of the learning

processes in (6) and (8). For the constant gain algorithm, this is gi, for i = {0, 1, 2, 3}, and
for the endogenous learning algorithm, k, ḡi and ḡ

sf
i for each the different factors. Optimal

values of the parameters are estimated for each of the three forecasting horizons (1, 3 and 6

months). To our knowledge, our paper is the first to provide estimates of the gain parame-

ter, using macroeconomic data observed at a daily frequency and varying forecast horizons.

Conditional forecasts of the term structure of yields are then constructed from (7), using the

optimal gains derived for the different forecasting horizons.

The values of the gain parameter are central to characterizing expectations using these

learning models. The values of the gain parameter presented in tables 2, 3 and 4. The main

observation is that across asset types, there is significant variation in the scaling factor. That

is, investors appear to be adjusting the gain parameters at this frequency. For example, for

the level factor β0, at the 1-month forecasting horizon, investor beliefs place less weight on

past observations in response to deviations for the AAA bonds, while for all-bonds portfolio,

investors place more weight on past observations when such deviations are observed. Thus,

the investors are placing more or less attention to past data, depending on the yield curve

factor and the type of asset. Even though the gains are estimated based on daily data, it is

10An example is Laubach, Tetlow and Williams (2007).
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noticeable that the optimization routine predicts such variation in the gains. This variation in

conditional expectations would not be captured by a rational expectations model of investor

beliefs; our results suggest that incorporating time-varying beliefs are essential to modeling

financial market expectations.

Another broad result is that agents appear to be more “rational”over the longer yields in

the sense that estimates of the constant gain and endogenous gain imply that the constant

coeffi cient model is being used for some of the yield curve factors. Even though a rational

expectations model cannot explain forecasts of the yield curve, certain aspects of the yield

curve do appear to be explained by a rational expectations model. Taking a closer look at

the 10-year yield in Table 4 we can see a well defined pattern: five of the six constant gains

on β0 are driven toward zero. This makes sense since this factor is considered the level,

which our agents would associate with the central bank interest rates. The factor with the

consistently highest constant gain values is β1, which is associated with the slope. Again,

this factor has the biggest impact in correctly forecasting the longer horizons.

5.2 Model Evaluation and Interpretation

Table 5 presents the comparison of conditional forecasts of the constant gain and endogenous

learning models at the different forecasting horizons, risk profiles and yield maturities. We

find that the largest gains in forecasting performance of the EGL mechanism, with respect

to the CGL is found for the AAA-rated bonds for the 1-year maturity at the 1- and 3-month

forecast horizons. Thus, compensating for deviations in observed coeffi cients with respect to

the past observations appears to be more significant for the relatively riskless assets. This

may be due to the composition of the AAA bond portfolio: investors who have lower risk

tolerance are more sensitive to variations in the coeffi cients, and adjust their forecasting

model accordingly. These results suggest that if investors respond more significantly to

deviations in yields on safe assets (potentially adjusting their holdings of these assets as

well), policy makers may be able to focus their initiatives on reducing variability in safe

yields, instead of targeting a variety of assets with higher levels of riskiness.

In addition, we make the following observations. First, at longer maturities, the EGL

improves upon the forecasting performance of CGL for "All yields". This is observed across

forecasting horizons. For example, for the 10-year yield, at the 3-month horizon, the im-
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provement of EGL relative to CGL is approximately 15%. Second, for the longest yield

in our data (10-years), the gain in forecasting performance by using EGL increases as the

forecast horizon increases for AAA-bonds. This is not observed for "All yields". Finally,

for a fixed forecasting horizon, EGL implies similar forecasting performance as CGL for

"All yields", when considered across yield maturities. This is not observed for AAA-bonds.

These results suggest that there are important considerations for allowing for differential

expectations formation processes for AAA- and All-bonds, due to their risk characteristics.

To further understand our results, we plot the values of the endogenous gains for the

1-month ahead forecasts of the 1-year maturity bonds for both bond pools in Figures 2(a)

and 2(b). While both display time variation of the gains over time, the values for the riskier

bond pool display larger movements. This reflects the greater variability of the underlying

yield curve factors, which leads to poorer forecasts. Hence, a constant gain may serve just as

well as an endogenous gain. In contrast, the AAA-rated bonds exhibit smoother transitions

between the values of the gains. This suggests that risk averse investors monitor (or should

monitor) the relationships between the underlying factors and gradually adjust how much

they respond to “shocks”in the data.

In our view, the above results suggest the following implications. First, a large literature

has used constant gain learning to model investor beliefs in theoretical frameworks. While

this framework does well, our analysis suggests that during periods of large deviations from

the historical average, it may not be insuffi cient for capturing the beliefs formation process.

Adopting the endogenous learning algorithms proposed above provides an intuitive manner

to model investor beliefs which can account for these deviations. Our results across the asset

types suggest that the riskiness of an asset affects the manner in which beliefs are formed

by investors, and presents an additional dimension that may be utilized by policy makers.

6 Conclusion

An empirical analysis of how subjective expectations evolve is useful for both macroecono-

mists and financial economists. This paper attempts to estimate how investors form con-

ditional forecasts for safe assets relative to assets with higher risk. While estimating the

optimal process to characterize conditional forecasts of investors, our methodology allows

investors to vary how much weight they place on historical data while forecasting across

14



asset types, maturities and forecast horizons. Our results for the Euro-area yield curves sug-

gest that the risk profile of assets is an important characteristic for investors while forming

conditional forecasts of yields (across maturities and forecast horizons). Future research will

explore whether these differences in forecasting models for assets with different risk attributes

is relevant for other datasets as well.
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Tables

Table 1: Moments of the Nominal Yield Curves for the Euro-Area

Yield Curve Moments

AAA All

Moment 1 year 5 years 10 years 1 year 5 years 10 years

September 2004 - December 2007

Mean 3.0771 3.4655 3.8091 3.0816 3.4871 3.8565

St. Dev 0.7880 0.5385 0.3850 0.7911 0.5400 0.3887

January 2008 - May 2015

Mean 0.7922 1.7512 2.6874 1.2997 2.4634 3.4349

St. Dev 1.1992 1.1961 1.1391 1.1249 1.0767 1.0053

Note: The above moments are shown for end of month data on the fitted curves for the 2004-

2015 data on AAA- and All-rated bonds.
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